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The  propert ies  of  a mul t i component  diffusion matrix,  derived from a model  for single-file diffu- 
sion, are d iscussed.  This  matr ix has  several  pleasing characteris t ics ,  many  of  which can be dis- 
cussed  in te rms  of  its e igenfunct ions.  The  model  has  been applied to the s teady-s ta te  W i c k e -  
Kal lenbach and to the t ransient  uptake exper iments .  For  the t ransient  uptake,  both cons tan t  
p ressure  and variable pressure  boundary  condit ions have  been considered.  Finally, the case  o f  a 
first-order reversible react ion is addressed .  © 1990 Academic Press. Inc. 

I N T R O D U C T I O N  

Several previous workers have devel- 
oped models for the diffusion of molecules 
in zeolites. Barrer and Jost (1) used an ap- 
proach based on the concepts of irrevers- 
ible thermodynamics. Habgood (2) ex- 
tended this concept to two-component 
systems. Riekert (3) and Palekar and Ra- 
jadhyakhsha (4-6) have used lattice models 
for some special cases of one- and two- 
component diffusion. Theodorou and Wei 
(7) modeled the diffusive process as a ran- 
dom walk on a square two-dimensional 
grid. Tsikoyiannis (8) and Tsikoyiannis and 
Wei (9) further developed this model and 
calculated the diffusional fluxes on the ba- 
sis of first-order correlation functions. 
These predicted fluxes are, as expected, 
identical to the fluxes calculated by Sun- 
daresan and Hall (10) from their lattice gas 
model for the case of negligible interactions 
between molecules. 

The lattice models are based on the idea 
that molecules are localized within the zeo- 
lite lattice and hop from one localized cen- 
ter to the next. This concept is in agreement 
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with recent NMR and powder diffraction 
experiments on the motion of aromatic mol- 
ecules in ZSM-5 (11-15). 

Derouane (16) has proposed a model 
based on the surface curvature of the zeo- 
lite, and suggested that molecular shape-se- 
lective effects are not necessarily restricted 
to the intracrystalline volume of zeolites. 
Derouane et al. (17) used this model to cal- 
culate the physisorption energy for a mole- 
cule on a curved surface, and extended the 
argument by saying that diffusion is con- 
trolled by a surface sorption barrier. The 
model predicts that diffusion rates increase 
as molecule and pore sizes match each 
other more intimately. This model may ap- 
ply in some cases but it does contradict, for 
example, data collected by several previous 
workers and correlated by Moore and Kat- 
zer (18). 

In this paper we analyze the properties of 
the diffusion matrix (Eq. (6)) of Tsikoyian- 
nis (8) and Sundaresan and Hall (10) for 
multicomponent systems. 

The model of Tsikoyiannis (8) assumes 
that molecules hop in a random fashion on a 
two-dimensional lattice with the following 
rules: 

1. Molecules hop from intersection to in- 
tersection on the grid; the probability that 
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they will be found in between intersections 
is negligible. 

2. Each hopping event is an independent 
Poisson process. 

3. No more than one particle can occupy 
a site at a given time. 

4. If a molecule is activated, and is des- 
tined to hop onto a site that is already occu- 
pied by another molecule, then both mole- 
cules remain where they are. 

The diffusion equation predicted by this 
model for a one-component system at the 
level of first-order correlation functions is 
simply Fick's second law of diffusion, 

00 = D V20, (1) 
0 t  

where the diffusion coefficient for a one- 
component system is given by 

D = a 2 q .  (2) 

Here, 0 is the occupancy of the component 
(number of molecules per intersection), a is 
the distance between intersections, and q is 
the hopping rate of a molecule (in an other- 
wise empty lattice) to a specific adjacent 
site. The corresponding equilibrium equa- 
tion is given by the Langmuir Isotherm for 
one-component systems: 

O = P/q (3) 
1 +p/q +p/q" 

Here, p can be interpreted as the bombard- 
ment rate of the species onto the grid 
boundary. 

As an example, consider the case of dif- 
fusion purely along the x axis in a slab. 
Then Eq. (1) becomes the familiar expres- 
sion 

= [0 01 0 o  ~2q  (4) 
Ot L0 x2J" 

We present the above equations for com- 
pleteness and clarity. In this work we are 
interested in multicomponent systems and 
we largely restrict our discussion to such 
systems. 

Figure 1 shows an example of two-corn- 
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FIG. 1. An example of counter-diffusion on the two- 
dimensional grid. 

ponent diffusion on the model grid. In this 
illustration, the component 1 molecules 
were initially in the grid. The component 2 
molecules were then introduced into the 
gas phase around the grid (ZSM-5 crystals). 
As equilibrium is approached, the compo- 
nent 2 molecules diffuse into the grid as the 
component 1 molecules diffuse out. 
Clearly, there will be some mutual hinder- 
ance between the component 1 and 2 mole- 
cules as they diffuse in different directions 
in the grid. It is this kind of problem that we 
address in this study. 

The result for the simultaneous diffusion 
of two components at the level of first-order 
correlation functions is 

d0  
--= = V[D V_0], (5) 
Ot 

where the constitutive matrix for two-com- 
ponent diffusion, D, is given by [; 0r0 , 0] 
D = a 2 (6) 

q2_ll_ 02 (1 - 01) 

and _0 is the occupancy vector [0] 
0 = . (7) 
- 02 

In these equations, qi can be interpreted as 
the hopping rate of a molecule of compo- 
nent i (in an otherwise empty lattice) to a 
specific adjacent site. 
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The partitioning implied by this model is 
given by 

Pi/qi 
Oi= 1 + pJqi  + P2/q2 i =  1,2, (8) 

where Pi can be interpreted as the bombard- 
ment rate of the ith component onto the 
grid boundary. Equation (8) is simply a 
Langmuir Isotherm for a two-component 
system. 

For the majority of this paper we use vec- 
tor notation as it allows results to be pre- 
sented in a concise manner. However,  note 
that Eq. (5) could be expressed without us- 
ing vector notation as the simultaneous 
equations 

OOl/Ot = ot2ql[(l  - 02) V201 + 01 V202] (9) 

O02/Ot = 0~2q2[02 ~7201 d- (1 - 01) V202]. 
(to) 

The appropriate expression for V20i is given 
by the particular problem being considered. 
For example, for diffusion in a slab purely 
along the x axis, 

[02 0i] 
VzOi = [ 3x z j .  (11) 

The detailed description of the derivation of 
Eqs. (1) and (5) and considerable discussion 
of the model are given in both Tsikoyiannis 
and Wei (9) and Tsikoyiannis (8). 

It is important to note that the above 
model has been developed at the micro- 
scale level with certain basic assumptions 
of the diffusion mechanism. It can now be 
used to make predictions of the macro- 
scopic and observable behavior of two- 
component diffusion. 

Qureshi and Wei (19) compare predic- 
tions given by the equations developed 
above with results from experiments on the 
counterdiffusion and codiffusion of ben- 
zene and toluene in zeolite ZSM-5. To get a 
good comparison with experimental data, it 
was necessary to accurately model the con- 
stant volume, variable pressure boundary 
conditions that existed in the experimental 
setup. However,  before analyzing this tran- 

sient uptake, variable pressure case, we 
consider two simpler cases to illustrate the 
properties of the diffusion matrix. These 
are steady-state diffusion in a Wicke-Kal- 
lenbach cell and transient uptake with con- 
stant pressure boundary conditions. The 
Wicke-KaUenbach cell, in particular, dem- 
onstrates several very appealing properties, 
and we have included an initial section, Il- 
lustrative Examples, to briefly demonstrate 
some of these features. Finally, we con- 
sider the case of a first-order, reversible re- 
action to evaluate the implications of this 
model on the most important industrial us- 
age of ZSM-5, as a catalyst. 

PROPERTIES OF THE D MATRIX 

Illustrative Examples 

The D matrix given in Eq. (6) for two 
components has some remarkable proper- 
ties, which can be explored by considering, 
as shown in Fig. 2, a Wicke-Kallenbach 
experiment of steady-state diffusion 
through a porous membrane. The matrix 
has two eigenvalues, and we designate Xf 
and ks as the fast and slow eigenvalues, re- 
spectively. Let V0~ and V02 be the concen- 
tration gradients of components 1 and 2 in 
the crystal. Then, if the concentration gra- 

Concentration 
Profile of 1 

Well-Mixed ~ 
Gas Phase ] 

) / 
c%77;,7 

/ 
Well--Mixed 
Gas Phase 

p~ 
p~ 

/ 
FIG. 2. The Wicke-Kallenbach diffusion cell. 
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dient ratio, that is, VOile02 is equal to the 
slope of an eigenvector, the flux is in the 
opposite direction to that eigenvector on 
the 0t, 02 plane. The eigenvectors X f and Xs 
are designated as the fast and slow modes 
of diffusion, respectively. 

In all of the following analyses, for the 
purpose of clarity, we put ot = 1 unless oth- 
erwise explicitly stated. 

Take as an example qt = q 2  = 1. In this 
case, the two eigenvalues and the associ- 
ated eigenvectors become simply 

The fast mode: hf = 1, Xf = (01, 02) 
The slow mode: h~ = 1 - 01 - 02, X~ = 

(1, --1). 

The fast mode is simply codiffusion where 
the gradients are proportional to the occu- 
pancies, or concentrations; the slow mode 
is counterdiffusion where the gradients are 
equal and opposite. Since these are pure 
modes, we label these states o f " p u r e  codif- 
fusion" and "pure  counterdiffusion," re- 
spectively. The very agreeable interpreta- 

tion, as demonstrated in Fig. 3, is that the 
more rapid diffusivity of pure codiffusion is 
independent of occupancy. The slower dif- 
fusivity of pure counterdiffusion declines 
with occupancy according to (1 - 0); it cor- 
responds to self-diffusion, and is a case of 
equimolar counterdiffusion as discussed by 
Riekert (3). 

For a numerical example, take _0 = (01, 
02) = (0.3, 0.2); the diffusion matrix be- 
comes 

o_ [o., 0.1 
0.2 0.7 

which has eigenfunctions hf = I, hs - 0.5, 
_Xf = (0.3, 0.2), and Xs = (1, -1) .  In the 
codiffusion case, the gradients are V_O = 
(0.3, 0.2), resulting in a flux of _J = ( -0 .3 ,  
-0.2) ,  which is large and has the opposite 
vector direction as the occupancy or gradi- 
ent. In a counterdiffusion case where the 
gradient is VO = (0.2, -0.2) ,  the resulting 
flux is J = ( -0 .  I, 0.1), which is small and 
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FIG. 3. Fast and slow eigenvalues for both hopping rates equal to 1. 
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FIG. 4. A numerical example of the eigenvector representation of the flux and occupancy gradient 
vectors on the occupancy plane. 

has the opposite vector direction as the gra- 
dient. Any arbitrary gradient is a linear 
combination of the eigenvectors, as is the 
flux. We can normalize the eigenvectors to 
get an idea of  whether an arbitrary gradient 
is closer to co- or counterdiffusion. In gen- 
eral we have 

V__0 = C f x f  + C s x  s (12) 

- J  = D ~7_0 = C fh f_x f  + C 2 h s X  s. (13) 

So, for the case given above, we have xf = 

(3, 2 ) / V ~ ,  and xs = (1, - I ) / V 2 ,  and if for 
example V_0 = (4, 1) = V~_xf + V~xs,  we 
can say that the gradient is closer to being 
codiffusion than counterdiffusion. The as- 
sociated flux is J = ( -3 .5 ,  -1 .5)  or - ]  -- 
(3.5, 1.5) as illustrated in Fig. 4. 

Precisely the same consideration applies 
to three- or multicomponent systems. For  a 
three-component system we have 

D = [q! 0 :][ 0203q20 q3 0302 01 81 ] 

1 - 0 3  - 01 02 • 

03 1 - Ol - 02 

(14) 

In the simple case of equal jumping rates ql 
= q 2  - -  q 3  = 1 ,  the fast eigenvalue is Xf = 1, 
which is independent of  occupancy, and the 
associated eigenvector is (01, 02, 03), which 
represents codiffusion where all the gradi- 
ents are proportional to the occupancy. 
There is a double eigenvalue of ?,sl = )ks2 = 1 

-- 01 -- 02 -- 03, which declines linearly with 
total occupancy,  and has the associated 
eigenvectors _Xsl -- (1, - I ,  0) and Xs2 = (0, 
l ,  - 1 )  which span all the counterdiffusion 
gradients by linear combinations. 

In the case of  unequal jumping rates 
there is a rotation of the eigenvectors. The 
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interpretations of codiffusion and counter- 
diffusion remain unchanged, although now, 
the slow mode is not equimolar counterdif- 
fusion. For example, let ql = 1 and qz = 
1.5, and again take _0 = (0.3, 0.2); then the 
diffusion matrix and the associated eigen- 
functions are 

[0"8 1 
0.3 

D =  
0.3 1.05 

hf = 1.25 xf = (2, 3)/X/~ 

ks = 0.6 _xs = (3, -2 ) /X/~ .  

The fast mode is still codiffusion, but 
weighted in favor of the faster component 
2; and the slow mode is still counterdiffu- 
sion, but weighted in favor of the slower 
component 1. See Fig. 5. 

A p p a r e n t  Di f fus ion Coeff icient  

The D matrix predicts that the flux of a 
component is a function of the concentra- 
tions and concentration gradients of both 
components. So in general 

Ji = 3~(gr01, V02, 01' 02), i = 1, 2 (15) 

For example, for the Wicke-Kallenbach 
cell, 

J = - D  V_0. (16) 

However,  the measurement that is usually 
made experimentally is of an apparent dif- 
fusion coefficient, which, for the case of a 
Wicke-Kallenbach cell, is defined by 

D~ = -J i /VOi,  i = 1, 2 (17) 

For the transient uptake case, we define the 
apparent diffusion coefficients by first ob- 
taining the "approach to equilibrium versus 
time curves" from the model. Next, we fit 
to those curves the curves generated by the 
usual Fickean diffusion equations, with the 
only fitted parameters being the apparent 
diffusivities. 

So, in detail, we first define the approach 
to equilibrium versus time curves as 

xi(t) = (#i(t) - Oio)/(Oioo - ~io), (18) 

where 0i(t) is the volumetric average occu- 
pancy, defined by 

c 
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FIG. 5. The rotation of eigenvectors on the occupancy plane caused by changing the hopping rates. 
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Oi(t) = f Oi(t) d V  
V (19) 

The Xi(t) are obtained from the model 's  dif- 
fusion equation 

0 0  
- = V ( D  V _0) (20)  

Ot 

together with the initial conditions 

_0 i = 0i0 , t = 0, i = 1, 2, (21) 

and in the constant pressure case we have 
fixed boundary conditions 

0 i = 0ib , r = R, i = 1, 2. (22) 

Or in the case of  the constant volume, vari- 
able pressure situation the boundary condi- 
tions are given by 

K i P i  
Oi = 

1 + KIPi + K2P2' 
r = R , i =  1,2  (23) 

Vg OPi OO i 
RgT Ot mp --~-, i = 1, 2, (24) 

where m is the grams of  crystals, p is the 
moles of  intersections per gram of crystals, 
Vg is the gas phase volume, Rg is the gas law 
constant, and T is the temperature. 

Now, to the generated xi(t) we fit the cor- 
responding curves generated by the usual 
Fickean diffusion equation 

where 

0 0  
Ot = V(D* V_0), (25) 

0] 
1) t =  

D 
(26) 

The initial and boundary conditions are 
once again given by Eqs. (21) and (22) for 
the constant pressure case, and Eqs. (21), 
(23), and (24) for the variable pressure case. 

The only parameters allowed to vary in 
this fitting are D~ and D~, the two apparent 
diffusion coefficients. The fitting is usually 
performed over the range I0 to 90% ap- 
proach to equilibrium. 

We use this concept of an apparent diffu- 
sivity as it is an advantageous method to 
enable understanding of  many of  the theo- 
retical predictions, as well as a practical 
way of  comparing experimental and theo- 
retical results. Thus, D~ depends on the 
concentrations and concentration gradients 
of  both components,  and gives us a means 
of  interpreting experimental results in 
terms of those variables. 

Wicke-Kal lenbach 

We now consider the Wicke-Kal lenbach 
type diffusion cell of Fig. 2 in more detail. 
The catalyst crystal in the cell provides the 
only pathway for mass transfer between 
two well-mixed gas phases. Each gas phase 
contains fixed concentrations of  the two 
components being studied. The system is at 
steady state, so there is a constant flux of  
each component  through the crystal. The 
concentration gradients are assumed to be 
very small and hence linear. 

Apparent diffusion coefficients, D~, can 
be calculated for each of the two diffusing 
components 

: - J i  

dOi/dx 

= qi a 2 [(1 - Oj) + Oi t~JJ' 
i , j =  1,2,  i--/:j. (27) 

Figure 6 shows D* t as a function of  the 
ratio of  the gradient of component  2, dO2~ 
dx, to the gradient of component 1, dOfldx, 
for different values of  their occupancies, 0~ 
and 02. The figure assumes a = 1 and ql = 
1. Two series of  lines are shown. The first 
has 0~ -- 0.1 and 02 = 0.1, 0.45, and 0.8. 
This series shows the effect of varying the 
occupancy of component 2. The second se- 
ries has Oz = 0.1, and 01 = 0.1, 0.45, and 
0.8, and shows the effect of varying compo- 
nent 1. The line 0~ = 02 = 0.1 is common to 
both series. The figure illustrates that 
changing Oz varies the intercept, and chang- 
ing 0~ varies the slope of  each line, as each 
line has a slope of  0~ and an intercept of 1 - 
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02. This means that as the occupancy of 
component I is increased the gradient ratio 
has a greater affect on D*I, and D* l decreases 
with increasing 0z. An important point to 
note is that the flux of component 1 can 
actually go up against its own concentration 
gradient, resulting in a negative apparent 
diffusivity. This occurs when the gradient 
of component 2 is much larger and in the 
opposite direction to the gradient of compo- 
nent 1. Finally, note that D~ is not a func- 
tion of q2, although, of course, it is a func- 
tion of ql- 

Eigenfunction Representation 

The underlying structure of the diffusion 
matrix is such that if the concentration gra- 
dients across the Wicke-Kallenbach cell 
are set up in the same ratio as the slope of 
one of the eigenvectors, then the apparent 
diffusivities of both components will be 

equal to the eigenvalue corresponding to 
that eigenvector. 

Figure 7 shows both D* 1 and D~ as func- 
tions of the ratio ofdO2/dx to dOJdx for 01 = 
02 = 0.1, and for hopping rates of 1. This is 
one form of graphical depiction of the D 
matrix. The points of intersection between 
the curves for D~ and D~ are of importance. 
It is at these two points that the apparent 
diffusivities are equal to the eigenvalues of 
the diffusion matrix, and the concentration 
gradient ratio is equal to the slope of the 
eigenvectors. 

In the general case, the diffusion matrix 
from the stochastic model has eigenvalues: 

k = { q l ( 1  - 02)  + q 2 ( 1  - 01) 
-+ [q](1 - 02) z + qzZ(1 - 01) 2 

+ 2qlq2(O102 + Ol + 02 - 1)]1/2}/2 (28) 

with corresponding eigenvectors 
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where 

["] X = 
u 

( q l ( 1  - 02)  - }k)// 
v = (29) qlOz 

The larger eigenvalue is designated the fast 
eigenvalue and the smaller eigenvalue is 
called the slow eigenvalue. 

The fast eigenvalue has the property of 
being the maximum attained by the mini- 
mum of the functions D~ and D~. Similarly 
the slow eigenvalue is the minimum value 
attained by the maximum of the functions 

t T D 1 and D 2. A consequence of these rela- 
tionships is that for any particular gradient 
ratio at most only one component can have 
an apparent diffusivity exceeding the fast 
eigenvalue; further, it is only when the gra- 
dient ratio is equal to the fast eigenvector 
that both apparent diffusivities are equal to 

the fast eigenvalue. Analogous reasoning 
can be made for the slow eigenvalue. That 
is, at most only one component can attain 
an apparent diffusivity lower than the slow 
eigenvalue, and both components can at- 
tain the slow eigenvalue only when the gra- 
dient ratio is equal to the slow eigenvector 
slope. 

Several important results can be derived 
from manipulating Eqs. (27)-(29). First, it 
can be shown that the diffusion matrix is 
positive semidefinite; that is, both the slow 
and fast eigenvalues are always greater 
than or equal to 0. Second, the fast eigen- 
value always corresponds to a case of co- 
diffusion; that is, both fluxes are in the 
same direction and the corresponding 
eigenvector, Xf, has a positive slope. Simi- 
larly, the slow eigenvalue corresponds to a 
case of counterdiffusion; that is, the fluxes 
are in opposite directions and the corre- 
sponding eigenvector, Xs, has a negative 
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slope. Finally, for any situation where the 
concentration gradients are in opposite di- 
rections, the apparent diffusivities of both 
components are less than their respective 
hopping rates. 

Figure 7 is specific for particular hopping 
rates and occupancies. It would be useful to 
be able to generalize this depiction. One 
way to do this is to consider the intersec- 
tion points, that is, the eigenvectors and ei- 
genvalues as being representative of the fig- 
ure. Then we can use Figs. 8 and 9 to 
determine the fast and slow eigenvalues as 
functions of the hopping rate of component 
2, and Figs. 10 and 11 to obtain the corre- 
sponding eigenvectors. Thus, Figs. 8 and 9 
give the ordinates for the points of intersec- 
tion, and Figs. 10 and 11 give the abscissas. 

For example, consider the case 01 = 02 = 
0.1, q~ = 1, and q2 = I0. Then, from Figs. 
8-11, hf -- 9.0, 2k s = 0.89, and the slopes of 
Xf and Xs are 81 and -0.12, respectively. 
This immediately shows that the fast mode, 

or pure codiffusion state, is achieved when 
the gradient of component 2 is 81 times 
greater than the gradient of component 1. 
In this state the faster component 2 entrains 
component 1, and the resulting apparent 
diffusivity of both components is 9.0. In the 
slow mode, or pure counterdiffusion state, 
the gradient of component 2 is 0.12 times 
the gradient of component I, and in the op- 
posite direction. In this case, component 1 
is slowing down component 2 and the ap- 
parent diffusivity of both components is 
0.89. The behavior of this system at all gra- 
dient ratios can be seen in Fig. 12, which is 
analogous to Fig. 7 except the hopping rate 
of component 2 is now 10. 

Figures 8-11 each showed the same two 
series of lines that were shown in Fig. 3. 
That is, the first series is 01 = 0.1 and 02 = 
0.1, 0.45, and 0.8, and the second is 0z = 
0.1 and 01 = 0.1, 0.45, and 0.8. It can be 
observed from these figures that both the 
fast and slow eigenvalues (that is, the pure 
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co- and counterdiffusivities) increase with 
the hopping rate of component 2. For q2 >~ 
q~ the fast eigenvalue approaches an as- 
ymptote of q2(l - 00, as illustrated in Fig. 
8, and the slow eigenvalue approaches q~(1 
- 01 - 09/(1 - 01), as shown in Fig. 9. 
Similarly, for q2 ~ q~ the fast eigenvalue 
approaches ql(l - 02), and the slow eigen- 
value approaches q2(1 - 01 - Oz)/(1 - 02). 
Therefore, when the two hopping rates dif- 
fer greatly, pure codiffusion is driven by the 
hopping rate of the faster diffusing compo- 
nent and retarded by the occupancy of the 
slower component. Pure counterdiffusion is 
controlled by the hopping rate of the slower 
component and the occupancies of both 
components. 

It can also be seen in Fig. 8 that the fast 
eigenvalue is bounded by min(ql, q2) ~ Af --< 
max(qb q2), and in Fig. 9 that the slow ei- 
genvalue is bounded by 0 -< Xs -< min(q~, 

q2)- These results can be derived from Eqs. 
(27) and (28). 

The change in hopping rates may also be 
interpreted as a rotation of eigenvectors, as 
alluded to in the section Illustrative Exam- 
ples. Figure 13 shows the rotation of eigen- 
vectors for the case 01 = 02 = 0.1 and ql = 
1. The abscissa shows the value of q2, and 
the ordinate shows the angle made by the 
eigenvectors with the V_0 = (I, 0) axis on 
the 01, 02 plane. The tangent of this angle is 
equal to the eigenvector slope. 

The relationship between the flux, the 
concentration gradients, and the eigenfunc- 
tions can be demonstrated in the following 
manner. We continue our eigenfunction 
representation of single-file diffusion in the 
Wicke-Kallenbach system by first express- 
ing the concentration gradient vector in 
terms of the normalized fast and slow 
eigenvectors: 
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~7_~ = Cf_xf + Cs_x s. (30) 

Now, to illustrate the effect of  varying V_#, 
let Cf and Cs vary, but with the restriction 

C 2 + C 2 = 1. (31) 

This means that V0 circumscribes a circle 
on the Xf, Xs plane, and so we take into 
account all possible gradient ratios. It fol- 
lows from Eqs. (16) and (30) that 

- J  = Cf)kfXf + Cs~ksXs, (32) 

and so 

Ill 2 2 2 --  C f h f  + C s h  s (33) 

which means, as illustrated in Fig. 14, that 
the locus of -J_ is an ellipse with a major 
axis of hf and a minor axis of  Xs. In this 
figure we are plotting xf .  -J_ and xf .  V__0 on 
the abscissa, and Xs • -_J and Xs • V__0 on the 
ordinate. The V__0 vector leads -_J by an an- 
gle to in the first and third quadrants, and 
lags by to in the second and fourth quad- 
rants. The angle to is given by 

fc x, + 1 
to = C O S - I  2 2 2 2 • 

LCfhf + CshsJ (34) 

The V_0 and - J  vectors coincide along the 
_Xf and Xs directions, so that for V_0 = -+xf, 
-J = --hfXf, and for V_0 = + X s , - J  = +h~Xs. 

Transient Uptake: Constant Pressure 

Another slightly more complicated exam- 
ple that can be considered is transient up- 
take in a constant pressure, infinite volume 
system. This situation arises, for example, 
in experiments done in an apparatus such 
as a Cahn balance. Only small perturba- 
tions of the gas phase are allowed. Now we 
have a transient system, instead of the 
steady-state system of  the Wicke-Kallen- 
bach scheme discussed earlier. This means 
that the diffusion equation must be consid- 
ered in its entirety. We consider only the 
case where the hopping rates of the two 
components are equal to 1. Equations (20)- 
(22) can be solved analytically if we first 
diagonalize the diffusion matrix 

i,__..,.-,__[o, o, r, o lr ,,,o,_,_o2, ,,,o+o2,] 
02 -Ol_]L0 1 - 01 - e2/[02/(01(01 + 02)) -1/(01 + 02) 
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FIG. 14. The relationship between the flux and the concentration gradient vectors on the eigenvector 
plane. 
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and then transform the occupancy vectors 

0' = M-I_0 (36) 

to get a transformed equation 

00 '  
- = D ' V  2 0 '  ( 3 7 )  

Ot 

with the boundary conditions also being 
transformed in the same manner. This sys- 
tem can be solved analytically, and trans- 
formed back to the original variables by 

0 = M 0'. (38) 

In a Cahn balance, or similar experiment, 
the diffusion coefficient is measured by per- 
turbing the surface concentration and moni- 
toring the approach to equilibrium. If it 
were possible to perturb the surface con- 
centrations of the two components in equal 
and opposite directions then a state of pure 
counterdiffusion would exist, with the ap- 
parent diffusivities of both components be- 
ing equal to the slow eigenvalue, 1 - 01 - 

02.  Alternatively, if the concentrations of 
components 1 and 2 were perturbed in the 
ratio 01 to 02 then a state of pure codiffusion 
would exist, with the apparent diffusivities 
of both components being equal to the fast 
eigenvalue, 1. Thus, in these special cases, 
Fig. 3 once again applies and gives the oc- 
cupancy dependency of pure codiffusion 
and pure counterdiffusion. 

Experimentally, however, it is difficult to 
achieve the perturbations that give the sim- 
plest mathematical result. In particular, it 
may not be possible to set up a pure coun- 
terdiffusion system. A perturbation caused 
by simply increasing the surface concentra- 
tion of one component, though, may be 
more easily possible. In this case there will 
be a decrease in the surface concentration 
of the other component through the inter- 
play of the Langmuir equilibrium isotherm. 
If an infinitesimal amount of component 1 is 
injected into the system, it can be shown 
that 

dO2 02 
- 1  < - -  - -  < 0 ,  ( 3 9 )  

dO1 O1- 1 

where 

0~+ 02-< 1. 

This means that the decrease in the occu- 
pancy of component 2 will always be less 
than the increase in occupancy of compo- 
nent 1. It follows that, in general, the con- 
centration gradient of component 2 is going 
to be in the opposite direction and smaller 
than the concentration gradient of compo- 
nent 1. 

Consider the case where there is no ini- 
tial component 1 present. We use the meth- 
odology described above to calculate the 
apparent diffusion coefficient for each com- 
ponent when an infinitesimal amount of 
component 1 is injected into the system 
which initially contains only component 2. 
Figure 15 shows the apparent diffusivities 
of each component as a function of the ini- 
tial amount of component 2 present. It can 
be seen that D~ decreases as (1 - 02). Also, 
D~ is smaller than D~ due to the component 
2 gradient being smaller and in the opposite 
direction to the gradient of component 1. 
This last observation can be related to the 
result described previously in Fig. 7, where 
it can be seen that when - 1  < gradient(2)/ 
gradient(l) < 0, then the apparent diffusiv- 
ity of component 2 is smaller than that of 
component 1. 

Figure 16 shows an example of the fitting 
of the apparent diffusivities of Fig. 15. It 
can be seen that for component 1 the fitted 
curve matches the model's uptake curve 
exactly. This occurs because the compo- 
nent going in is generated by only one ei- 
genvalue. For component 2, which is com- 
ing out, the fitted curve does not match the 
theoretical curve exactly, since it is gener- 
ated from a mixture of the two eigenvalues. 

Transient Uptake: Variable Pressure 
(Constant Volume) 

Qureshi and Wei (19) collected two-com- 
ponent diffusion data in a constant volume, 
variable pressure apparatus. In those ex- 
periments, a mass balance of chemical spe- 
cies between the gas and adsorbed phases 



> 

t3 

1.00 

0.75 

0 . 5 0  

0 . 2 5  

'\ 
\ 
\ 
\\ 

\\ 
\ 

\ \  
\ 

\ \  
\ 

" ' ' ' ' " ' . , . . . . , . . ,  

" ' " , . . . . .  

C ~ t  2 

0 . ~  | . . . .  ' ' 

0 .00  0 . 2 5  

\ \  

\ \ \ ~ t  1 
\ k  

\ \  

\ \  
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ \  
\ 

\ 
\ 

0 1 = 0  

q~=q2  = 1 

" ' . .  \ 
'... \ 

"" , , .  \ \  
"'... % 

• . \ 
. . \  

. . \  
" .x. .~ 

% 
I ! 

0 . 5 0  0 . 7 5  1 .00  

Presorbed Oceupar~y  of 2. 0 2  

Fro. 15. Apparent diffusivities for a Transient Uptake, Constant Pressure experiment with an 
infinitesimal amount of component 1 injected (counterdiffusion conditions). 

Iii 

o 
c- 
O 

8 

1.00 

0 . 8 0  

0 . 6 0  

0 . 4 0  

0 . 2 0  

0 , 0 0  

0 

, /  /j .- v\ 
• I 

J Fitted 4# . .  
$# and ..~ / / 

Fitted s 4, S 
/ ,  

, "  C o m p o n e n t  2 / '  / , "  
$ i j ¢  S 

I 
I j I J J  ~ 

/ • 

N ~ 0 = 0.5 
t,I,; 2 

t I I I I I . . . .  I . . . . .  I 

5 10  15 2 0  2 5  3 0  3 5  4 0  4 5  

Time ~ (s ~ )  

FIG. 16. Sample calculation of apparent diffusivities for Fig. 15. 



142 QURESHI AND WEI 

t0 

< 

1.00 

0.75 

0.50 

0.25 

0.00 
0.00 

\ \  
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\\ Corrxaonent 1 
\ 
\ 
\ 

\ 
\ 
k 

\ 
\ 

k 
X 

\ 
\ 

\ 
\ 

N 

Corrgaonent 2 x 

0.25 0.50 0.75 1.00 

Average Component 2 Occupancy 

FIG. 17. A p p a r e n t  d i f fus iv i t i e s  for  a T r a n s i e n t  U p t a k e ,  Va r i ab l e  P r e s s u r e  ( C o n s t a n t  V o l u m e )  expe r i -  

m e n t  w i t h  a f ini te  a m o u n t  of  c o m p o n e n t  1 i n j ec t ed  ( coun te rd i f fu s ion  cond i t ions ) .  

played a role. In addition, for experimental 
reasons, nonnegligible amounts were in- 
jected into the system. This system was an- 
alyzed using Langmuir isotherm boundary 
conditions and a mass balance between the 
adsorbed and gas phases as described in the 
section on apparent diffusivity. The system 
had to be analyzed numerically. 

An example of the results is shown in 
Fig. 17, with the input parameters given in 
Table 1. The general trends of the constant 
pressure results of Fig. 15 are still followed 
in this more realistic case. Component 1, 
which is being adsorbed, shows an almost 
linear decrease in apparent diffusion coeffi- 
cient with an increasing amount of compo- 
nent 2 presorbed in the catalyst. Compo- 
nent 2, which is being desorbed, shows a 
very low apparent diffusion coefficient, 
and, in general, it is much lower than the 
apparent diffusion coefficient of component 

1. Both sets of apparent diffusion coeffi- 
cients approach zero at high occupancy. 
The apparent diffusivities are functions of 
several parameters, including the amount 
of component 2 present, the amount of 

T A B L E  1 

P a r a m e t e r s  U s e d  in T r a n s i e n t  

U p t a k e ,  Va r i ab l e  P r e s s u r e  S imu-  

l a t ion  of  Fig.  17 

qt = 1.0 
qz = 0.6875 

Kt = 0.113 P a i  

Kz = 0.0270 Pa  - l  
Vg = 205 c m  3 

m = 0.005 g 
p = 5.77 × 10 -4 mol  g - i  

etin = 32 Pa  
Pzi, = 0 Pa  

T = 338 K 
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component 1 injected, and the Langmuir 
isotherm constants. The apparent diffusiv- 
ity of component 2 is so low at least partly 
because a finite amount of component 1 is 
being injected, whereas, in Fig. 15 an infini- 
tesimal amount was injected. Figure 18 
shows an example of the calculation of ap- 
parent diffusivities for Fig. 17. 

First-Order, Reversible Reaction 
Finally, consider the case of a first-order 

reversible reaction at steady state. It is pos- 
sible to analyze this system analytically if it 
is assumed that the hopping rates of the two 
components are equal. Then for slab geom- 
etry, with x going from 0 at the center to L 
at the surface, 

where 

dx D ~ x _ 0  = K 0 ,  (40) 

D = a2q [ (1 -  02) 01 ] 
0 2  ( l  - -  0 1 )  

(41) 

and 

-k2 
K = -k l  kz " (42) 

Here, q is the hopping rate of each compo- 
nent, and kl and k2 are the forward and re- 
verse reaction rates. The boundary condi- 
tions specify the surface concentrations of 
each component, as well as the symmetry 
condition at the centerline: 

Oi= Oib a t x = L ; i =  1,2 (43) 

dOi 
~ = 0  a t x = 0 ;  i =  1,2. (44) 

The solution of this system of equations is 

o;:[o,b 1 
kl + k~J 

r ~ kl + k2 x 1J 
cosh L ~ % ( i  --o) k~O 

x + ~ (45) 
c o s h [ ~  k l + k 2  L] kl+k2' 
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where i = 1, 2; j  = 1, 2;j  4: i; and 0 = 01 + 
02 is not a function of  x. 

The effectiveness factor is given by 

'1 = L(klOlb k202b) k lOl  - k202 dx 

tanh 4) (46) ' m 

where 

/ k l  + k 2 
4) = ~/a2q(1 _ 0) L. (47) 

It follows that the effectiveness factor valid 
for any geometry, for the diffusion limited 
case is given by 

"0~ = 1/qb, (48) 

where the modulus @ is defined by 

v__ e [ k ~ + k 2  
= Sp ~ / ~ q ( i  ---'8)" (49) 

Here, Vp/Sp is the volume to surface area of  
the particular geometry being considered. 

Comparison of Eqs. (47) and (49) with the 
usual expressions for the Thiele modulus 
shows that the single-file counterdiffusion 
model predicts that this two-component 
system will diffuse with an effective diffu- 
sivity given by 

De = ot2q(1 - 0) .  (50)  

This means that in the diffusion limited re- 
gime, the effect of  occupancy is to reduce 
the effectiveness factor by a factor of  
xv/ ( l '  - 0 ) .  

Figure 19 shows an example of  such a 
reaction, where 0tb = 0.8, 02b = 0.1, ot2q~ = 
I,  ~x2q2 = I,  k] = 10, k2 = 2, a n d  L = 0 . 5 .  

As Eq. (50) shows, the diffusivity for 
each component calculated for this reacting 
system turns out to be the same as the self- 
diffusivity of  a single component with hop- 
ping rate q and occupancy O in a nonreact- 
ing system. This result occurs because, in 
the reaction system considered, the fluxes 
and gradients of  the two components are 
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always equal in magnitude and opposite in 
sign. 

CONCLUSIONS 

The diffusion matrix has a fast eigen- 
value, hf - 0, a slow eigenvalue, hs ~ 0, and 
the properties: 

• The fast eigenvalue is bounded by 
min(qb q2) --<- Xf--< max(qb q2). 

• The slow eigenvalue is bounded by 0 -< 
hs <- min(qb q2). 

• For one hopping rate much bigger than 
the other, the fast eigenvalue is driven by 
the hopping rate of the faster component 
and retarded by the occupancy of the 
slower component. The slow eigenvalue is 
controlled by the hopping rate of the slower 
component and both occupancies. 

In the Wicke-Kallenbach case: 

• The fast mode is interpreted as a case 
of codiffusion (fluxes in the same direc- 
tion), and the slow mode as a case of coun- 
terdiffusion (fluxes in opposite directions). 
We call these two states pure codiffusion 
and pure counterdiffusion since they corre- 
spond to pure modes of the diffusion ma- 
trix. 

• The apparent diffusivities of both com- 
ponents are always less than their respec- 
tive intrinsic hopping rates when the con- 
centration gradients of the two components 
are in opposite directions. 

For transient uptake: 

• The apparent diffusivity for transient 
uptake problems was defined so as to create 
a practical method of comparing theory 
with experimental results. 

• The apparent diffusivity of the compo- 
nent going in is greater than that for the 
component coming out since the concentra- 
tion gradient of the injected component is 
larger. 

For a first-order reversible reaction: 

• In the diffusion limited regime, and for 

equal hopping rates, the effect of occu- 
pancy is to reduce the effectiveness factor 
by a factor of ~/(1 - 0). 

APPENDIX: NOMENCLATURE 

Variables 

Cf Scalar defined by Eq. (12) 
Cs Scalar defined by Eq. (12) 
D Constitutive diffusion matrix 
D' Transformed diffusion matrix 
D t Apparent diffusivity matrix 
D One-component diffusivity (cm 2 s -l) 
D~ Apparent diffusivity of component i 

(cm 2 s -1) 
J Flux vector 
Ji Flux of ith component 
K Reaction rate matrix 
Ki Langmuir isotherm constant (Pa-l) 
ki Reaction rate constant (s -1) 
L Slab half-width (cm) 
M Diagonalizing matrix 
m Mass of crystals (g) 
P~ Partial pressure of ith component 

(Pa) 
Piin Increase upon injection of partial 

pressure of ith component (Pa) 
p Bombardment rate of a molecule 

onto the grid boundary (s -l) 
p; Bombardment rate of ith component 

onto the grid boundary (s -l) 
q Hopping rate of a molecule to a spe- 

cific adjacent site, in an otherwise 
empty lattice (s -~) 

qi Hopping rate of a molecule of the ith 
component to a specific adjacent 
site, in an otherwise empty lattice 
(S -l) 

R Crystal radius (cm) 
Rg Gas-law constant (Pa cm 3 mo1-1 K -1) 
r Radial coordinate (cm) 
T Temperature (K) 
t Time coordinate (s) 
V Volume of crystals (cm 3) 
Vg Gas phase volume (era 3) 
X Eigenvector 
x Normalized eigenvector 
x Slab half-width coordinate (cm) 
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Greek 

Distance between grid intersections 
(cm) 

Effectiveness factor for slab geome- 
try 

~= Effectiveness factor for any geome- 
try, diffusion limited case 

_0 Occupancy vector 
0' Transformed occupancy vector 
V0 Occupancy gradient vector 
0 Volumetric average occupancy (mol- 

ecules/intersection) 
Oi Occupancy of component i (mole- 

cules/intersection) 
0 Total occupancy or occupancy in 

one-component system (mole- 
cules/intersection) 

V0~ Gradient of component i 
h Eigenvalue 
O Moles of intersections per gram of 

catalyst (tool g-~) 
@ Thiele Modulus for any geometry 
4~ Thiele Modulus for slab geometry 
Xi(t) Approach to equilibrium curve for 

ith component 
to Angle between V O and -_J vectors 

Subscripts 

f Fast eigenvalue 
i ith component 
z~o Boundary condition of /th compo- 

nent 
i0 Initial condition for ith component 
ioo Equilibrium condition for ith compo- 

nent 
s Slow eigenvalue 

Superscripts 

' Transformed diffusion matrix or oc- 
cupancy vector 

t Apparent diffusivity or apparent dif- 
fusivity matrix 
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